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High-precision Hylleraas-type calculations of the hyperfine constants for the four lowest excited 3 2S, 4 2S,
528, and 6 2S states of the °Be* ion are reported. Small adjustments to the hyperfine constants arising from
effects that include the finite nuclear mass, the magnetization density distribution over the nucleus, the
Breit—Rosenthal correction for finite nuclear size, and lowest-order relativistic and quantum electrodynamic
corrections are considered. The final values obtained for the hyperfine constants for the n S states were:
—158.78, —62.43, —30.66, and —17.29 MHz for n = 3, 4, 5, and 6, respectively.

I. Introduction

The lithium atom has long served as a target for testing
various theoretical approaches to the evaluation of numerous
properties. The few-electron nature of this species makes it
amendable to very high-precision calculations. In particular, for
the hyperfine coupling, the lithium atom has proved to be a
rather attractive target, and considerable work using a variety
of computational techniques has been reported.! ™!’

The beryllium positive ion, 9Be™, is an even more attractive
target. The ground state of this atomic ion has been studied by
laser fluorescence spectroscopy in an ion trap,'® resulting in a
hyperfine constant having 11 digits of precision, making it one
of the most accurately known hyperfine constants of any species
that has been investigated. The determination of the hyperfine
structure constants for the excited states of “Be™ has received
far less experimental attention. The only experimental results
available are two studies on the low-lying P states of this atomic
iOn.19’20

The objective of the present work is to report the results of
high-precision nonrelativistic calculations of the four lowest
excited doublet S states of the Be™ ion. The Hylleraas approach
that is employed in the present study has proved to be
particularly successful for studying few-electron atomic and
molecular systems. This technique has also yielded high-
precision results for low-lying excited states. In essence, the
entire correlation energy is captured in the present calculations:
the correlation energy not accounted for is expected to be below
~5 x 1077% of the total correlation energy.

The target property of interest is the hyperfine constant. The
accurate calculation of this quantity requires the wave function
in the vicinity of the nucleus to be accurately described. This
provides a suitable theoretical challenge, particularly for the
excited states of even small atomic and molecular systems.
Beyond the nonrelativistic regime, a number of small corrections
contribute to the hyperfine constant. Often, one or more of these
corrections are ignored. In the present study, all of the key small
corrections are estimated for each excited state investigated.

II. Theory

The nonrelativistic Hamiltonian for an n-electron atomic
system can be written in the following form
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For atomic systems, the nucleus is taken to be the principal
reference particle. In eq 1, r; designates the electron—nuclear
separation distance for electron i, r; is the interelectron
separation distance, M and Z are the mass and charge of the
nucleus, and g; = —1 for the electrons (in au). The reduced
mass relative to the nucleus is u; = m:M/(m; + M), where the
particle mass is m; = 1 for the electrons (in au). Adopting the
infinite nuclear mass approximation, the Hamiltonian for the S
states of an atomic three-electron system can be written as'™3
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where Py indicates that the summation is over the six permuta-

. 1 2 3 . . . .
tions i k)’ and the notational simplifications u; = ry3, u,

= r31, and u3 = ry, are employed. The contribution of the mass
polarization term, the term involving the double sum over V;*V;
in eq 1, will be addressed in Section V.A. The form of the
Hamiltonian given in eq 2 turns out to be particularly useful
when a Hylleraas basis set is employed. The impact of finite
nuclear mass for the calculated target property will be considered
in Section V.A.

The trial Hylleraas wave function involves an expansion in
terms of explicit factors of the electron—electron separation
distances of the form
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where _{ is the three-electron antisymmetrizer, C, denotes the
expansion coefficients, y, is a spin eigenfunction, and N
represents the number of terms in the expansion. The constants
ay, b, and ¢, are greater than 0, and the integer indices {iy, j.
ky, 1, my, n,} are each greater than or equal to 0.

The Hylleraas approach just sketched is well known and has
a long history in calculations on atomic systems. It is apparently
not as well known that this same atomic-like technique can be
employed for very high-precision non-Born—Oppenheimer (BO)
calculations on molecular systems. This approach avoids the
evaluation of two-center integrals in elliptical coordinates that
arise in the more traditional molecular calculations using explicit
r; factors. The size of the molecular systems that can be
currently attacked is limited entirely by the mathematical
problem of resolving the correlated integrals with multiple r;
factors that arise. For non-BO calculations involving Slater-
type-orbital basis functions, progress has been considerably
limited because of the severe mathematical integration problems
that arise. Recent work over the past few years by Adamowicz
and colleagues using correlated Gaussian functions has been
particularly successful using this atomic-like approach.?!~2*

The Fermi contact operator is given by the following
expression

3
2
Hy = gﬂogeglﬂBﬂNl' Z o(r)s; (4)
=1

where u is the vacuum permeability, g. is the electronic g factor,
which includes the electron magnetic moment anomaly, g; is
the nuclear g factor, ug and uy are the Bohr and nuclear
magneton, respectively, I is the nuclear spin operator, s; is the
electron spin operator for electron i, and O(r;) is the Dirac delta
distribution. The Fermi contact Hamiltonian can be written as
an effective operator in the following form

Hy = hA,I"J 5)

where h denotes Planck’s constant, J is the total angular
momentum operator, and A; is the hyperfine constant (in hertz).
In the following discussion, the subscript J on A will be dropped
to avoid a proliferation of subscripts. For the 2S states of “Be™,
the energy splitting occurs between F' = 1 (upper level) and F
= 2 (lower level), where F is the total spin (nuclear plus
electronic) of the °Be™ ion. The hyperfine constant can be
expressed in terms of the experimental hyperfine frequency, Av,
by the following result

A= —%Av ©)

It is common practice to report the expectation value of the
Fermi contact term in the form

3
f=<ylaxy o(ryo, ly> ©)
i=1
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where the operator o, acts on the electron spin states a(7) and
B() in the following manner: o,0(i) = a(i) and o, f(i) = —p(i),
1 is characterized by the quantum numbers L, S, M;, and M,
and M;, = L and Mg = S. The relationship between the
nonrelativistic contribution to the hyperfine constant and f can
be written as

_ HolpHUn8ely, _  8eli

where ay is the Bohr radius and 7 is the nuclear spin. The
constant C isolates a group of fundamental constants that can
be re-expressed in terms of fundamental constants that are
known collectively with greater accuracy so that

C= Uotg Uy

+ = o’cR,(mJm,) = 95.41066037(14) MHz
2mhay

(€))

where a is the fine structure constant, ¢ is the speed of light,
R.. is the Rydberg constant, and m,. and m, are the mass of the
electron and proton, respectively. The numerical result for C
reported in eq 9 is based on the most recent recommended values
of the fundamental constants given in the CODATA report.”
The associated error estimate is reported in parentheses. The
nuclear moment needed to evaluate eq 8 was taken from ref
26.

III. Computational Details

From the form of the Hamiltonian given in eq 2 and the
choice of Hylleraas wave function in eq 3, it can be readily
demonstrated that all of the integrals required for the evaluation
of matrix elements of the Hamiltonian and the hyperfine operator
take the following form

I(isj3 k’ ls m,n, a9 ﬁ9 )/) =
If r’ir’érgr’lzr’l’gr%e_“”_brz_‘” dr, dr, dr; (10)

where a >0, b >0, and ¢ > 0. The individual integer indices {i,
J» k, I, m, n} must be greater than —2 for this integral to be
convergent. For an evaluation of the nonrelativistic (NR) energy
(Enr) expectation value

Exg = <$(r;,tp, 1)l Hgl(r,, 15, 15)> (1n

where 1 is the normalized wave function obtained from a
variational calculation based on Hs, and for the evaluation of
the Fermi contact expectation value, the only integral cases that
arise have indices {/, m, n} each greater than or equal to —1.
The evaluation of more complicated expectation values, for
example, those arising in lower-bound calculations for the state
energies or the evaluation of certain relativistic contributions
leads to integral cases with members of the set {/, m, n} taking
values of —2. These cases are considerably more complicated
to evaluate. An introductory account on the evaluation of
correlated integrals with r; factors for two-, three-, and four-
electron systems can be found in ref 27.

Extensive optimization of the nonlinear exponents in eq 3
was carried out. The optimization was done as each basis term
was added to the basis set. A stochastic optimization approach
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TABLE 1: Convergence Behavior of the Nonrelativistic Energies for the Low-Lying Excited n %S States of Be™

Exgr (hartree)

N 328 47 528 67
100 —13.922 465 919 —13.797 873 636 —13.740 424 783 —13.709 376 659
300 —13.922 780 497 —13.798 703 473 —13.744 609 204 —13.716 207 500
600 —13.922 788 485 —13.798 715 281 —13.744 629 490 —13.716 280 185
1000 —13.922 789 111 —13.798 716 367 —13.744 631 457 —13.716 285 677
1300 —13.798 716 497 —13.744 631 722 —13.716 286 039
1330 —13.922 789 202
1600 —13.798 716 542 —13.744 631 784 —13.716 286 148
1888 —13.798 716 573
1940 —13.744 631 827
2058 —13.716 286 244

“ The number of basis functions employed is denoted by N.

TABLE 2: Comparison of Different Literature Values for
Eng for the n S States of Be™

TABLE 3: Comparison of Different Literature Values for the
Fermi Contact Expectation Value for the n S States of Be™

state  nonrelativistic energy size author/year/reference state f (nonrelativistic) au  size author/year/reference
328 —13.92272 170 Pipin and Woznicki 328 3.172 447 King (1991) (29)
(1982) (28) 3.18087 Guan and Wang (1998) (33)
—13.922 764 447 King (1991) (29) 3.1766719 Godefroid, Fischer, and Jonsson
—13.922 788 6 Wang, Zhu, and Chung (2001) (13)
(1992) (30) 3.1769 Yerokhin (2008) (17)
—13.922 789 267 4 8000 Stanke et al. (2008) (31) 3.1778 1330 present work
—13.922 789 268 554 2 ~10000 Puchalski and Pachucki 478 1.252 501  King (1991) (29)
(2008) (32) 1.25071 Guan and Wang (1998) (33)
—13.922 789 268 559* Puchalski and Pachucki 1.2488773 Godefroid, Fischer, and Jonsson
(2008) (32) (2001) (13)
—13.922 789 20 1330 present work 1.2494 1888 present work
428 —13.798 662 501 King (1991) (29) 528 0.618 522 King (1991) (29)
—13.798 714 4 Wang, Zhu, and Chung 0.61419 Guan and Wang (1998) (33)
(1992) (30) 0.6137 1940 present work
—13.798 716 609 2 8000 Stanke et al. (2008) (31) 67 0.3460 2058 present work
—13.798 716 57 1888 present work . ) .
525 —13.744 577 502 King (1991) (29) . ”AThe r}umber . of basis functions employed by each author is
—13.744 630 6 Wang, Zhu, and Chung indicated in the size column.
(1992) (30)
62 _};;Tg ggé gi ;ggg g;:zzﬁi Xgﬁi above the recent calculation of Stanke et al.’' The basis sets

“The number of basis functions employed by each author is
indicated in the size column. ”Energy eigenvalue based on
extrapolation to infinite basis set.

was used with a generous search grid employed for the exponent
parameters. Orbital exponent sets within the search grid were
randomly selected. The energy for each set of exponents was
determined. The optimal energy set was then selected. Further
refinements were made using a Newton search. To simplify the
optimization the choice, a, = b, was used to restrict the
computer cost. Each electronic state was separately optimized.
This is an essential approach if high-precision results are to be
obtained for the excited states.

IV. Nonrelativistic Results

In Table 1, the behavior of the nonrelativistic energy for each
of the states studied is shown as a function of the size of the
basis set. These results provide support for the level of
convergence of the energy level calculations. A comparison of
the Eng values of the present calculations with a selection
of results from previous theoretical work is displayed in Table
2. The result obtained for Exg for 5 2S improves upon previously
published work. No accurate values for the 6 S state appear to
be available for comparison with the present calculation. The
value obtained in the present calculations for the 3 2S state is
~69 nanohartrees above the most recent results of Puchalski
and Pachucki,’? and for the 4 2S state, it is ~67 nanohartrees

employed by these authors are larger than those used in the
present study by factors of approximately 7.5 and 4 for the 3
2S and 4 °S states, respectively. With the very large basis sets
employed by Puchalski and Pachucki, it was necessary to
employ multiple precision arithmetic to do the integral evalu-
ations. This was done to avoid near-linear dependence problems
that can arise in the Hylleraas basis set expansion.

Given some of the uncertainties for the small corrections that
will be discussed in the next section, we feel that the nonrela-
tivistic component of the calculations is sufficiently accurate
so0 as not to be the limiting factor in the overall precision of the
reported values for the hyperfine constants.

The values for the expectation value of the Fermi contact
operator, f, are summarized in Table 3. Some accurate results
from previous calculations are also summarized in this table.
For the 3 28 state, the present result is approximately 0.036%
above the result of Godefroid et al.’* and 0.097% below the
result of Guan and Wang.** For the 4 S state, the present result
for f is about 0.042% higher than the result of Godefroid et
al."3 and 0.10% below the result of Guan and Wang.*? The result
of the present calculation for the 5 %S state agrees with the
theoretical result of Guan and Wang to within approximately
0.080%.% No accurate results appear to be available for
comparison with the 6 %S state.

V. Small Corrections to the Hyperfine Coupling

Beyond the nonrelativistic calculation, there are a number of
small corrections to the hyperfine constant that arise from the
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TABLE 4: Input Values Used to Determine the
Bohr—Weisskopf Correction to the Hyperfine Constants of Be™

factors for Bohr—Weisskopf correction value for “Be

nuclear spin 3/2

nuclear moment (nm) —1.177432¢
<r?>12 (fm) 2.519°
<>, (fm) 2.67°

spin g value (neutron) —2.354864
asymmetry parameter § 1/5

g 1

oL 0

<Ks> 0.000145
<K > 0.0000890
e 0.000156

@ Ref 26. ® Ref 54. ¢ Average of several values reported in ref 54.

finite nuclear mass, relativistic effects, quantum electrodynamic
(QED) corrections, and nuclear effects. A complete many-
electron theory for all of these corrections for atomic and
molecular systems is currently unavailable, and it is therefore
necessary to resort to approximate one-electron models or simple
nuclear models to estimate some of these corrections. There
are difficulties in assigning meaningful error estimates to
some of the approximate models that are employed to determine
the following small corrections.

A. Finite Nuclear Mass Correction to the Hyperfine
Coupling Constant. The finite nuclear mass impacts the
calculations in three different ways. Two schemes can be used
to evaluate the nonrelativistic mass corrections to the hyperfine
constant. The first approach to the calculation of mass effects
is to replace ¥ in eq 11 by vy, that is

Exg = <,(r;, 15, T)IHIp, (1), 1), 1)> (12)

M

where ), is normalized and is obtained in a variational
calculation based on the Hamiltonian given in eq 1. The mass
polarization term present in H can also be expressed in terms
of partial derivatives with respect to the variables r; and ; in a
fashion related to eq 2.>* The Fermi contact term in eq 7 is
then evaluated with 3 replaced by .

The second approach is to obtain the principal mass correction
to the hyperfine constant by multiplying fin eq 8 by a factor of
(1 — (u/M))*. This leads to a mass correction to the hyperfine
constant of the form

— gl sy Ly
A 3M{1 () }ANR (13)

For the calculation of 0A ., the atomic mass for “Be was taken
from ref 35, and the calculated nuclear mass is 16424.203m,.
The difference between the mass-corrected hyperfine constant
using the factor (1 — (u/M))* and the hyperfine constant
evaluated employing the wave function 1), leads to the mass
polarization correction to the hyperfine constant. The values
reported in Table 5 were determined in this manner. Because
this correction arises from the difference in values that are very
close, the uncertainty in the reported mass polarization correc-
tions to the hyperfine constants is probably quite high. The mass
polarization correction impacts the least significant digit reported
for the final hyperfine constants by O to 2 for the four states
considered.

Some of the relativistic and QED contributions to the
hyperfine constant have a mass dependence.’*~3® These are at
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least an order of magnitude smaller than the least significant
digits retained in the present calculations and are accordingly
ignored in the present work.

B. Lowest-Order Relativistic Correction to the Hyperfine
Constant. Pachucki® has given a general theoretical treatment
of the relativistic corrections to the hyperfine splitting for a three-
electron atomic system through order o, where a is the fine
structure constant. The resulting formulas have a singular-like
structure. No calculations based on these formulas have been
published.

In place of the Pachucki analysis, a simplified one-electron
model is commonly employed to treat the valence electron.*0~#?
Employing the following parameters

= (_1)j+l+1/2(/- + 1/2)’ y = \/Kz — A (14)

d =V + 20kl — n)(ll — ) (15)

where j, [, and n are the total angular momentum, orbital angular
momentum, and principal quantum numbers, respectively, the
relativistic correction to the hyperfine constant is given by the
following result

A+ )25 + Di2k(n — Ikl + y) — dl
6Am={"( D@ + D2k — Ikl + y) 1}ANR

dyvay* — 1)
y(dy (16)

It is common practice to present the preceding result in a series
expansion form for an n s electron (l =0, = '/5, k = —1) in
terms of aZ as

2 J—
6Am=’“” + n 11](()LZ)2Jr
6n
(189 — 330n — 13;1;24+ 2251 + 2o3n4) 2 +
n

O(0°Z%) A, (17)

Some authors®!? evaluate the relativistic correction by replac-
ing Z in the preceding formula with an effective nuclear charge
Zetr, Where Zoys = Z — 0, and o denotes a suitable screening
factor. Other authors, for example ref 10, do not include a
screening constant. It is not immediately clear how the optimal
screening factor should be accounted for in the present calcula-
tions. In the vicinity of the nucleus, the extent of screening is
expected to be small. The effects of screening were determined
by considering the calculated relativistic correction to the
hyperfine constant using ¢ = 0, that is, no screening, and were
then re-evaluated for each state using screening constants
determined from Slater’s rules. The changes from unscreened
to screened values have the biggest impact for the 3 2S state,
with deceasing impact in terms of actual contribution to the
hyperfine corrections of the 4 2S, 5 2S, and 6 2S states.
Specifically, the change in the 3 2S state is from —0.288 MHz
for the unscreened value to —0.072 MHz for the screened value.
For the 6 °S state, the change is from —0.030 (unscreened) to
—0.0075 MHz (screened). The values reported in Table 5 are
the screened values. The uncertainty introduced by a lack of
precise knowledge of the appropriate screening is expected to
be ~1 in the last reported digit for the hyperfine constants of
the 5 2S and 6 2S states, ~1—4 in the final reported digit for
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the hyperfine constant of the 4 2S state, and ~1—10 in the last
pair of digits for the 3 2S state. The correct answer on the issue
of the extent of screening will depend on further theoretical
developments on the many-electron relativistic corrections to
the hyperfine constants along the lines of the contribution of
Pachucki.®

The effect of the polarization of the paired electrons by the
valence s electron via a Breit interaction has been investigated
by Sushkov.*® The total Breit correction to the hyperfine constant
due to this polarization mechanism is

0A o = 0.681Z0CAy, (18)

A Coulomb correction to the hyperfine constant was also derived
by Sushkov and is given by

OAc = —0.558Z0C Ay (19)

This correction arises from the v/c (particle velocity to speed
of light ratio) expansion of the electron—electron Coulomb
interaction involving Dirac spinors and retains only terms of
order (v/c)®.. Combining egs 18 and 19 gives the total Sushkov
correction to the hyperfine constant

0Ag = 0.123Z0’Axg (20)

The values obtained for this correction are rather small and
impact only the fifth or sixth significant digit for the calculated
hyperfine constants of the excited S states of Be™.

C. Quantum Electrodynamic Corrections to the Hyper-
fine Constant. The lowest-order QED correction is commonly
split into two parts. One contribution is the Schwinger*
correction to the electronic g factor, which takes the form o/(27).
This correction, along with some additional small corrections,
is incorporated into the value of g.. The remaining QED
contributions to the hyperfine constant are based on a one-
electron model and are given by*+

a(ZOL)

0Aqep = (Cla(Z(l) + (e, {In(Za)~*}* +

¢y (n) In(Zo) > + Czo(”)])ANR (21)
where the state-independent constants take the following form

e=m2-3 cp=-2 (22)

and the state-dependent term, c¢,,(n), for n S states is given by

8 1001 _ 8 2 8
en(n) = =3 In@n) + 25 = == + —2 3 Z

?vl'—‘

360
(23)

In the case of n = 1, the sum in eq 23 is assigned to the value
zero. The state-dependent terms cyo(n) have been tabulated as
numerical values by Jentschura and Yerokhin.® The results
employed for c,o(n) for the present calculations are: 10.417048,

King

9.719388, 9.312703, and 9.045565 for n = 3, 4, 5, and 6,
respectively.

D. Bohr—Weisskopf Correction to the Hyperfine Con-
stant. The impact of the finite size of the nucleus on the
hyperfine coupling constant is taken into account by including
in the expression for the hyperfine coupling constant a multi-
plicative factor, Cys, that takes the following form*’

Cys = (1 = O)1 — ) (24)

In eq 24, 0 is a direct correction for the finite nuclear size, and
it is often referred to as the Breit—Rosenthal correction.*® This
term is discussed in Section V.E. The term ¢ accounts for a
correction to the hyperfine constant due to the distribution of
magnetization density over the extent of the nucleus. This
contribution is referred to as the Bohr—Weisskopf correction,* !
and this subsection details how it is evaluated in the present
study.

The most commonly employed procedure for evaluating the
contribution to the hyperfine constant arising from the finite
size of the nucleus is to use a result of Zemach.>? In Zemach’s
model, a one-electron approximation is employed, and the
hyperfine correction is evaluated as —2ag '<r>.,,, where <r>,
is the first statistical moment of the convolution of the nuclear
electric and magnetic distributions. In the present study, a
different approach has been employed to account for the
corrections to the hyperfine constant resulting from the finite
nuclear size. The following theory can be adapted to deal with
the case in which the odd nucleon is either a proton or a neutron
and can also be employed to deal with both an odd proton and
neutron. The general case is discussed, and the appropriate
parameters for 3Be are tabulated.

In the single-particle model, the correction & can be deter-
mined using>

e =0 <K>+a, <K, >+ o l(<Kg> —<K, >) (25)

In eq 25, o and «; are the fractional spin and orbital
contributions to the magnetic moment, respectively, and are
given by

_8s(& 80

= , o, =1—a (26)
g/gs — &) L s

where gg and g, are g factors for the spin and orbital momentum
of individual nucleons, respectively. Normally, the assignment
g, = 1 for a proton and g, = 0 for a neutron is made. The spin
distribution asymmetry of the nucleus is described by the
parameter ¢, defined by

20 — 1 o

B —4(1+1), for I=1+ 1,

=\ 21+3 | @7
a , for I=1-1,

The expectation values <Ks> and <K;> are determined from>
<K> = ﬁ)” K(R)lu(R)I’R* dR (28)

and



Low-Lying Excited %S States of Be™

<K,> = ["K,®)uR)R dR (29)

where the radial part of the probability density of the odd
nucleon is assumed to be homogeneously distributed over the
nuclear volume and is given by

lu(R)1> = I%H(RO ) (30)
0

where H(R) is a Heaviside step function. Approximate expres-
sions for Ks(R) and K1 (R) for S states in the nonrelativistic limit
have been developed by Shabaev™

_ OZRy([R\: 1 (R
o =5HG) - wlw)) o

and

_ 30ZRy((R\2 1 {R\4
s =g (w) ~ulR)) o

where Ry = (5/3)'2<r?>);, <r>t is the root-mean-square radius

of the nuclear magnetization density distribution, and Ac is the
Compton wavelength: Xc = A/(m.c). One approximation is to
assume that the root-mean-square radius of the nuclear mag-
netization density distribution is the same as the root-mean-
square radius of the nuclear charge distribution, <r*>!2, For the
calculation of Ry in this work, the average of several values of
<r?>}? reported in ref 54 has been employed. The value for gg
was evaluated from the following formula

(&s — &)
glszj:merlzlil/z (33)
In the case of 3Be, g = 0 and [ = 1 so that g = 2u;. The
values of the parameters that determine ¢ and the calculated
value of this quantity are summarized in Table 4. The result

TABLE 5: Theoretical Results for the Nonrelativistic and
Small Corrections to the Hyperfine Constants of the Excited
n S States of Be™

A (MHz) °Be*

contribution 3728 4728 528 628
nonrelativistic —158.844 —62.453  —30.677 —17.296
finite mass 0.0290 0.0114 0.0056 0.0032
mass polarization —0.0285 —0.0114 —0.0056 —0.0032
relativistic —0.0721 —0.0279 —0.0135 —0.0075
Sushkov —0.0042 —0.0016 —0.0008 —0.0005
QED 0.0657 0.0256 0.0125 0.0070
Bohr—Weisskopf  0.0248 0.0098 0.0048 0.0027
Breit—Rosenthal ~ 0.0586 0.0230 0.0113 0.0064
total —158.78 —62.43 —30.66 —17.29
other theory —158.6% —62.58¢  —30.9¢

—158.999° —62.518" —30.701°
—158.79¢ —62.427¢
—158.98(2)¢

—158.897(7)°

—158.905(7)°

@ Nonrelativistic results, ref 29. ® Nonrelativistic results, ref 33.
¢ Nonrelativistic results, ref 13. ¢ Ref 55. ¢ Ref 17.

J. Phys. Chem. A, Vol. 113, No. 16, 2009 4115

reported for ¢ in Table 4 is in close agreement with the results
of Yamanaka'? and Yerokhin,'” who obtain values of ¢, adjusted
for the opposite sign convention employed here, of 0.000160(12)
and 0.000158(15), respectively. The Bohr—Weisskopf correction
to the hyperfine constant is determined using 0Apy = —&Ang.

E. Breit—Rosenthal Correction to the Hyperfine Con-
stant. The Breit—Rosenthal correction for the effect of finite
nuclear size, d, has been derived by Shabaev™? for small Z values
for S states as

oz (34)

This result assumes that a homogeneously charged sphere is
adopted to model the nuclear charge distribution, and Ry is given
in terms of the root-mean-square nuclear charge radius as Ry =
(5/3)2<?>12, The value of <r*>!2 employed in the present
calculations is indicated in Table 4.

The Breit—Rosenthal correction to the hyperfine constant is
given by the following result

OAgr = O0Axg (35)

and O is obtained from eq 34. This correction impacts the fourth
or fifth significant digit for the calculated hyperfine constants
for the excited %S states of Be™.

VI. Total Hyperfine Constant

The total hyperfine constant is the sum of the nonrelativistic
component, Axg, and the seven corrections indicated in the
preceding subsections. Thus

A = ANR + 5Amass + 6Ama557p01 + 5Arel + éAS +

OAgep + OAgy + 0Agg (36)

total

The results for A, and the component contributions are
tabulated in Table 5 for the four excited 2S states investigated.

VII. Discussion

For the 3 %S, 4 %S, and 5 S states, there are other theoretical
values for the hyperfine constant available for comparison. For
the 3 2S state, the results of the present calculation of the
hyperfine constant are in fairly close agreement with previous
results: the deviation is about 0.07 to 0.08% from the most recent
results of Yerokhin'” and approximately 0.1% from the result
of Blundell et al.>® For the 4 2S state, the present calculation is
in close agreement with the nonrelativistic calculations of Guan
and Wang* and Godefroid et al.'* For the 5 S state, the result
of the present study agrees very closely with the nonrelativistic
result of Guan and Wang.*® For the 6 2S state, there are
apparently no other accurate computational results available for
comparison.

Unfortunately, there are no experimental results available with
which to compare the results of the present calculations. Given
the potential to study the excited states of this species by high-
resolution spectroscopy in an ion-trap configuration, perhaps
the present theoretical work will inspire experimental interest
in the hyperfine structure of the excited states of “Be™.

One observation of note from the results presented in Table
5 is the partial cancellation that occurs when the small
corrections to the hyperfine constant are summed. This clearly
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indicates the need to include all of the major corrections rather
than retaining just one of the key contributions. This partial
cancellation provides a rationalization of why the nonrelativistic
level of theory produces a fairly satisfactory result in reasonable
agreement with the more refined theoretical approach adopted
in the present work. A similar cancellation was noted in a related
study for the corresponding states for different isotopes of the
lithium atom.'®

A direct consequence of the neglect of the many-electron
nature of some of the small corrections to the hyperfine constant
is the impossibility of making a meaningful estimate of the errors
for some of these corrections. In some cases, this directly results
from the simplified one-particle models employed. There is also
a limitation in the accuracy with which certain nuclear structure
information is known. As previously indicated, there is a partial
cancellation of some of the small contributions to the hyperfine
constants; however, the accumulated uncertainty from the small
corrections is obviously additive. A somewhat approximate
estimate of the errors, partially based on the uncertainty of the
calculated nonrelativistic contribution and the possible uncer-
tainty associated with screening issues discussed previously,
indicates that there is expected uncertainty of about 10—14 in
the last two tabulated significant digits for A for the 3 2S
state. For the 4 S, 5 S, and 6 %S states, the expected uncertainty
is approximately 2—5 in the last quoted digit for the total
hyperfine constants for these three states.

A principal limitation to improving the present calculations
is the nonmonotonic convergence behavior observed for the
determination of the f values. This plays a role for each of the
excited § states that was studied. Additional sources of error
reside in the determination of the small corrections. In fact, the
accuracy is limited because the many-electron nature of most
of these corrections is not incorporated in the calculations. There
is some variation in the reported values for the magnetic dipole
moment, u,. Of the most accurate reported values for this
quantity,?®°° there is a spread of ~50 ppm.
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